
Lien L2 Alpha Specification

Lien Protocol

May 2021

1 About This Document

The Lien L2 Alpha is the world’s first Layer-2 option marketplace. As a Layer-2 (L2)

protocol, we adopted ZK-Rollup and developed our system with the bellman Community

Edition [6], which is one of the most sophisticated library to implement zero-knowledge proof

systems.

In our marketplace, a user takes four actions: registration, deposit, trade, and withdrawal.

After the registration of the L2 account, the deposit of ETH, and the issuance of SBTs and

LBTs in L1, the user can trade the option tokens with almost zero without compromising

the security level in L2.

In this document, we explain the detailed specification of the Lien L2 Alpha. The docu-

ment is written for crypto-engineers who are familiar with the basics of cryptography (such

as the zero-knowledge proof).

2 Circuits

Our ZK-Rollup system has two circuits: a process circuit and a transform circuit. In

the beginning, the aggregator generates proofs for the process circuit. On the maturity date,

the aggregator suspends the process circuit and begins to generate proofs for the transform

circuit. These proofs are verified by a smart contract, called the verifier contract.

1

2.1 Process Circuit

The process circuit validates three types of transactions: register transactions, deposit trans-

actions, and trade transactions. Every time transactions are validated, the user’s state in

L2 is updated.

These states are committed to a sparse Merkle tree, which we call a state tree. The

state tree is constructed using a ZK-friendly (but non-gas-friendly) hash algorithm, MiMC-

7. The validity of the state transition and the construction of the state tree are proved with

the zero-knowledge proof systems, and therefore no one can steal user’s option tokens or

perform double-spending. Moreover, anyone can reproduce the valid states in L2 because all

transactions are available on L1, which solves the data availability problem [1].

Each process circuit handles 160 transactions. This number is fixed because R1CS cannot

express dynamic loops. If there are less than 160 transactions, dummy transactions are

padded.

2.2 Transform Circuit

The transform circuit transforms the state tree into the exit tree. The exit tree is con-

structed using a gas-friendly hash algorithm, Keccak-256. Therefore, users can prove their

states without paying a high gas fee.

The transform circuit consists of two procedures. First, it verifies the existence of users’

states in the last state tree. Second, it constructs a new exit tree from the states. These

procedures guarantee that the state tree and the exit tree hold the equivalent states. Each

exit tree contains up to 256 users’ states to restrict the number of constraints. If more than

256 users are registered, multiple exit trees are constructed.

2

3 Hash Functions

Hash computations are the most expensive computations that require a large number of

constraints in the circuit or large consumption of gas in the smart contract. We use two

efficient methods to compute hash functions: SlicedKeccak256 and Chain Hash.

3.1 SlicedKeccak256

SlicedKeccak256 is the hash function that we mainly use in our implementation. It takes

the head of 31 bytes from the output of the Keccak256 hash function. We do not use the

whole of the 256-bit output to avoid an overflow problem. Since the order of finite field

on the computation in BN256 elliptic curve is smaller than 2256, 256-bit numbers may be

outside of the range. By taking the first 31 bytes (i.e., 248 bits) of the hash value, we avoid

this problem.

The input data size should be 64 bytes. If the input data size is insufficient, then the

input data is padded with zero bits.

3.2 Chain Hash

Throughout this implementation, we often want to compute the hash value of large data,

while SlicedKeccak256 can only accept 64-byte data as an input. The Chain Hash is an

aggregated hash computed from an array of fixed-size bytes data. We typically consider an

array of hash values, which we refer to a hash array. In this section, we describe how we

can compute an aggregate hash of a hash array efficiently.

In the verifier contract, we compute the hash value of the all transaction data (called the

all transaction hash, described in section 4.16) using this Chain Hash scheme. The (n+1)-th

value of Chain Hash is an output of SlicedKeccak256 computed from the n-th value of Chain

3

Hash and n-th value in the hash array:

ChainHash0 = 0

ChainHashn+1 = Hash(ChainHashn||HashArray[n])

The first value of Chain Hash (ChainHash0) is defined as zeros whose length is 31 bytes.

Since HashArray[n] has fixed-size bytes (as it is a hash value), the input of the right-hand

side has a fixed size. Accordingly, it is a valid input of our hash function, SlicedKeccak256.

When there are n non-dummy transactions (n ≤ 160), the ChainHashn is adopted as the

all transaction hash.

In the circuit, the same method is not applied since R1CS cannot express dynamic loops.

Therefore, the ChainHash160 must always be adopted regardless of the number of non-

dummy transactions. To hold the consistency of the Chain Hash, we ignore the Chain Hash

computed with the hash of the dummy transaction (DummyHash):

ChainHash0 = 0

IsDummyFlagn = (HashArray[n] == DummyHash)

ChainHashn+1 = Hash(ChainHashn||HashArray[n]) ∗ (1− IsDummyFlagn)

+ ChainHashn ∗ IsDummyFlagn

It is obvious that the previous Chain Hash is inherited to the new Chain Hash in the

case that HashArray[n] == DummyHash; therefore the verifier contract can compute the

ChainHashn equivalent to the ChainHash160 in the circuit, with ignoring dummy transac-

tions. (Figure 1)

4

Figure 1: computation gas with/without ChainHash.

4 Data Type Definitions

In this section we explain the definitions of data types that appeared in our implementation.

Each data has a bits-data form and can be encoded into bits data.

4.1 UId

UId is a user’s id in L2 (UId) generated in the registration process. It is a non-negative

integer and issued in sequential order. The bits-data form of UId is simply 16 bits data:

Table 1: The bits-data form of UId

UId

16 bits

4.2 L2 PublicKey

A user’s public key in L2 (L2 PublicKey) is a point in Baby Jubjub Elliptic Curve [8]. It

consists of the x-coordinate (254 bits) and the corresponding y-coordinate (254 bits). Since

the sum of the two bits size is not a multiple of eight, zero bits are inserted into the bits-data

form of L2 PublicKey:

5

Table 2: The bits-data form of L2 PublicKey

x-coordinate y-coordinate zero bits

254 bits 254 bits 2 bits

4.3 L2 Address

A user’s address in L2 (L2 Address) is computed by taking the head of 20 bytes from the

output of SlicedKeccak256 hash. function. The taken data itself is the bits-data form of L2

Address:

Table 3: The bits-data form of L2 Address

L2 address

160 bits

Note that its size and bits-data form is the same as those of the user’s Ethereum address

in L1 (L1 Address).

4.4 Nonce

A user’s nonce denotes the number of the user’s transactions issued in L2. It is a non-

negative integer and begins from zero. The bits-data form of nonce is simply 16 bits data:

Table 4: The bits-data form of nonce

Nonce

16 bits

4.5 Balance

A user’s balance denotes the balance of his option token in L2. Since there are two types

of tokens, namely SBT and LBT, the user has the SBT balance and the LBT balance.

Each bits-data form is 32 bits data:

6

Table 5: The bits-data form of balance

Balance

32 bits

4.6 L2 State

A user’s state in L2 consists of UId, L1 Address, L2 Address, nonce, SBT balance, and LBT

balance. They are updated by the corresponding transactions in L2. Its bits-data form is a

combination of each bits data:

Table 6: The bits-data form of state

UId L1 Address L2 Address nonce SBT balance LBT balance

16 bits 160 bits 160 bits 16 bits 32 bits 32 bits

4.7 State Hash

A state hash is an output of SlicedKeccak256 computed from the bits data of the state.

Since the size of the state is 416 bits but the required input size of SlicedKeccak256 is 512

bits, 96 zero bits are padded into the state:

Table 7: The input data to compute the state hash

UId L1 Address L2 Address nonce SBT balance LBT balance zero bits

16 bits 160 bits 160 bits 16 bits 32 bits 32 bits 96 bits

4.8 State Tree

A state tree is a sparse Merkle tree [7] that contains users’ states. Its key is specified with

the corresponding UId and its state hash is committed as its value. The root of the state

tree (state root) is stored on the L1 storage, and updated by L2 transactions. (Note that

we implemented the sparse Merkle tree in Rust based on the iden3 implementation [5].)

7

4.9 Price Data

A price data is used to report the price of LBT/SBT (LBT price in SBT) to L2 as a

price oracle. The L1 contract obtains the ETH price from ChainLink1 and calculates the

theoretical price of LBT/SBT by solving the Black–Scholes formula. Therefore, the price

data specifies the round id of Chainlink and the corresponding calculated price to guarantee

that the price used in L2 is not altered by the aggregator.

The round id and the price are non-negative integers and the size of each data is 32 bits.

If both data is zero, we call it dummy price data.

The bits-data form of the price data is a combination of the round id and the price:

Table 8: The bits-data form of the price data

RoundId Price

32 bits 32 bits

4.10 All Price Hash

An all price hash is an output of Chain Hash computed from the array of the hash of the

price data, i.e.

AllPriceHash = ChainHash(SlicedKeccak256(Bytes(PriceData))[]).

4.11 Register Data

A register data is used to report the registration event to L2. It has the registered user’s

UId, L1 Address, and L2 Address. Its bits-data form is a combination of these data:

Table 9: The bits-data form of the register data

UId L1 Address L2 Address

16 bits 160 bits 160 bits

1https://chain.link/.

8

https://chain.link/

The output of SlicedKeccak256 computed from the bits data of the register data is spe-

cially called a register hash in our implementation, i.e.

RegisterHash = SlicedKeccak256(Bytes(RegisterData)).

It is contained in other data types such as deposit data in section 4.13.

4.12 All Register Hash

An all register hash is an output of Chain Hash computed from the array of the register

hash, i.e.,

AllRegisterHash = ChainHash(RegisterHash[]).

4.13 Deposit Data

A deposit data is used to report the deposit event to L2. It contains the user’s register hash

and the quantity of deposited ETH. In the process circuit, the deposit data is reconstructed

based on the information of the deposit transaction, that is, the UId, the L1 Address,

the L2 Address, and the quantity to increase the SBT/LBT balances. If a malicious user

specified a larger quantity in the deposit transaction than the deposited ETH quantity, the

reconstructed deposit data is not equivalent to that in L1 and such inconsistency is detected

by a mechanism of Entry Hash described in section 4.17.

The bits-data form of the deposit data is a combination of the register hash and the

amount of the deposited ETH:

Table 10: The bits-data form of the deposit data

Register Hash Quantity

248 bits 32 bits

9

4.14 All Deposit Hash

An all deposit hash is an output of Chain Hash computed from the array of the hash of the

deposit data, i.e.

AllDepositHash = ChainHash(SlicedKeccak256(Bytes(DepositData))[]).

4.15 L2 Transactions

All of the L2 transactions consist of a tx type, an available value, and a non-available

value. The tx type specifies the type of transactions. The available value is a part of the

transaction data that is necessary to reproduce the state from the data written on L1 (this

property is essential for solving the data availability problem). The non-available value is

the rest of the data.

A tx type denotes the type of transaction with 2-bits flags as below:

Table 11: Tx Type

Tx Type Value Transaction Type

00 SBT Trade Tx
01 LBT Trade Tx
10 Deposit Tx
11 Register Tx

An available value and a non-available value are both used as private inputs in the process

circuit, and their contents and size depend on the type of the transaction. The former is,

however, only published onto L1 to guarantee data availability.

The transaction hash is computed only from the tx type and the available value.

Specifically,

TransactionHash = SlicedKeccak256(TxType||Bytes(AvailableV alue)).

Accordingly, the transaction hash can be computed not only in the circuit but also in the

10

verifier contract.

4.15.1 Trade Transaction

An SBT transaction is an L2 transaction to sell SBT. Likewise, an LBT transaction

is an L2 transaction to sell LBT. The available value of an SBT transaction has the user’s

UId, the quantity to sell SBT, and the round id corresponding to the specified price data.

Anyone can reproduce the new state altered after the transaction only from the published

data. Its bits-data form is a combination of the UId, the quantity, and the round id:

Table 12: The bits-data form of the available value in the trade transaction

UId Quantity Round Id

16 bits 32 bits 32 bits

Its non-available value has the user’s nonce and the digital signature that utilizes EdDSA

for the Baby Jubjub Elliptic Curve [2]. Not only the signature but also the nonce is required

to prevent replay attacks: a malicious aggregator can submit and execute the same signed

transaction in L2 many times without permission if the nonce is not necessary. The non-

available value does not have to be published onto L1 as long as their validity is proved with

the zero-knowledge proof systems. Its bits-data form is a combination of the nonce and the

signature:

Table 13: The bits-data form of the non-available value in the trade transaction

Nonce Signature

16 bits 1280 bits

4.15.2 Deposit Transaction

A deposit transaction is L2 transaction to split the deposited ETH into SBTs and LBTs

and increase his SBT/LBT balances. Its available value consists of the user’s register hash

and the quantity of the deposited ETH. The register hash should be published because the

11

L1 contract has to verify that the user of the register hash is the same person who deposited

the corresponding ETH in L1. Specifically, from the available value the deposit data is

reconstructed in the circuit, and invalid data not equivalent to that of L1 is detected. Its

bits-data form is a combination of the register hash and the quantity:

Table 14: The bits-data form of the available value in the deposit transaction

Register Hash Quantity

248 bits 32 bits

Its non-available value is only the user’s register data. This is necessary to verify the

UId, L1 Address, and L2 Address in the old state in the circuit. Its bits-data form is the

same as that of the register data.

Table 15: The bits-data form of the non-available value in the deposit transaction

Register Data

336 bits

4.15.3 Register Transaction

A register transaction is L2 transaction to register a new account in L2. Its available

value is only the user’s register hash. As well as the deposit transaction, it is required to

verify that the user of the register hash is the same person who obtained the corresponding

UId in L1. Its bits-data form is the bits data of the register hash:

Table 16: The bits-data form of the available value in the register transaction

Register Hash

248 bits

Its non-available value is only the user’s register data. This is necessary for the same

reason described in the above section. Its bits-data form is also the bits data of the register

data:

12

Table 17: The bits-data form of the non-available value in the register transaction

Register Data

336 bits

4.16 All Transaction Hash

An all transaction hash is an output of Chain Hash computed from the array of the

transaction hash, i.e.,

AllTransactionHash = ChainHash(TransactionHash[]).

.

4.17 Entry Hash

The entry hash [3] is an output of SlicedKeccak256 to fix the gas amount caused by public

input. The use of entry hash is necessary because operations on BN256 elliptic curve is

expensive. For example, each scalar multiplication on BN256 elliptic curve needs 6,000

gas [4]. By fixing the length of the input, we can save the gas amount incurred for such

computation (Figure 2).

In our implementation, Entry Hash is defined in the following way.

EntryHash = Hash

AllTransactionHash ||OldStateRoot ||NewStateRoot ||

AllRegisterHash || AllDepositHash || AllPriceHash

 .

The entry hash is used both on the verifier contract and the circuit. Although the transac-

tions, state roots, register data, deposit data, and price data are published onto L1, the entry

hash is only utilized as the public input and the others are private input. If any published-

but-private input in the circuit is different from the published data, the entry hash should

also become different. Therefore, the entry hash can verify that the published data on L1 is

13

Figure 2: computation gas for the scalar multiplication on BN256 elliptic curve with without
EntryHash.

equivalent to the private input in the circuit.

4.18 Overwrite Tree

In our specification, each exit tree contains up to 256 transactions. The number of states

in each tree is fixed because the transform circuit cannot process a dynamic loop. This

technical limitation causes the following two problems.

1. The gas amount to store the roots of the exit trees in the L1 storage increases linearly

with the number of users.

2. The users whose states are committed to the late exit trees cannot withdraw their

assets immediately after maturity.

To resolve this problem, we combine all the exit trees and construct one large Merkle

tree, called an overwrite tree. The new root of the overwrite Tree is computed from its

14

Figure 3: L1 storage gas with/without Overwrite Tree.

previous root and the root of the added Merkle tree:

OverwriteTreeRootn+1 = Hash(OverwriteTreeRootn||AddedTreeRoot)

To prove the existence in the Merkle tree combined into the overwrite tree, two proofs are

required.

1. The proof that the last root of the Overwrite Tree is calculable from the root of the

specified Merkle tree.

2. The Merkle proof for the specified Merkle tree.

When n Merkle trees are combined into the overwrite tree, the root of i-th Merkle tree is

proved with the i-th root of the overwrite tree and the roots of i + 1 . . . n Merkle trees.

In our implementation, multiple exit trees are combined into the overwrite tree, and its

root is only stored in the L1 storage. In this way, the first inefficiency of the transformed

circuit is solved (Figure 3).

15

In addition, the gas amount to verify the first proof increases with the number of added

exit trees. Therefore, after all of the exit trees are added, the users whose states are com-

mitted to the late exit trees can withdraw their assets with less gas amount. Accordingly,

those who committed to late trees can withdraw their profit with lower gas costs. While the

second inefficiency of the transformed circuit is not completely resolved, the users in the late

exit trees are compensated with the gas costs.

References

[1] Mustafa Al-Bassam, Alberto Sonnino, and Vitalik Buterin. Fraud and data availability

proofs: Maximising light client security and scaling blockchains with dishonest majorities,

2018.

[2] Jordi Baylina and Marta Bellés. Eddsa for baby jubjub elliptic curve

with mimc-7 hash. https://iden3-docs.readthedocs.io/en/latest/_downloads/

a04267077fb3fdbf2b608e014706e004/Ed-DSA.pdf.

[3] Vitalik Buterin. On-chain scaling to potentially ∼500 tx/sec through mass tx valida-

tion, 2018. https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-

sec-through-mass-tx-validation/3477.

[4] Antonio Salazar Cardozo and Zachary Williamson. Eip-1108: Reduce alt bn128 precom-

pile gas costs, 2018. https://eips.ethereum.org/EIPS/eip-1108.

[5] iden3. iden3 implementation of sparse merkle trees, n.d. https://github.com/iden3/

circomlib/tree/master/circuits/smt.

[6] matter labs. bellman “community edition”, n.d. https://github.com/matter-labs/

bellman.

[7] Dahlberg Rasmus, Pulls1 Tobias, and Peeters Roel. Efficient sparse merkle trees, 2016.

16

https://iden3-docs.readthedocs.io/en/latest/_downloads/a04267077fb3fdbf2b608e014706e004/Ed-DSA.pdf
https://iden3-docs.readthedocs.io/en/latest/_downloads/a04267077fb3fdbf2b608e014706e004/Ed-DSA.pdf
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://eips.ethereum.org/EIPS/eip-1108
https://github.com/iden3/circomlib/tree/master/circuits/smt
https://github.com/iden3/circomlib/tree/master/circuits/smt
https://github.com/matter-labs/bellman
https://github.com/matter-labs/bellman

[8] Barry WhiteHat, Jordi Baylina, and Marta Bellés. Baby jubjub ellip-

tic curve, 2019. https://iden3-docs.readthedocs.io/en/latest/_downloads/

33717d75ab84e11313cc0d8a090b636f/Baby-Jubjub.pdf.

17

https://iden3-docs.readthedocs.io/en/latest/_downloads/33717d75ab84e11313cc0d8a090b636f/Baby-Jubjub.pdf
https://iden3-docs.readthedocs.io/en/latest/_downloads/33717d75ab84e11313cc0d8a090b636f/Baby-Jubjub.pdf

	About This Document
	Circuits
	Process Circuit
	Transform Circuit

	Hash Functions
	SlicedKeccak256
	Chain Hash

	Data Type Definitions
	UId
	L2 PublicKey
	L2 Address
	Nonce
	Balance
	L2 State
	State Hash
	State Tree
	Price Data
	All Price Hash
	Register Data
	All Register Hash
	Deposit Data
	All Deposit Hash
	L2 Transactions
	Trade Transaction
	Deposit Transaction
	Register Transaction

	All Transaction Hash
	Entry Hash
	Overwrite Tree

